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Sensitivity to initial conditions in the Bak-Sneppen model
of biological evolution
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Abstract. We consider biological evolution as described within the Bak and Sneppen 1993 model. We
exhibit, at the self-organized critical state, a power-law sensitivity to the initial conditions, calculate the
associated exponent, and relate it to the recently introduced nonextensive thermostatistics. The scenario
which here emerges without tuning strongly reminds of that of the tuned onset of chaos in say logistic-like
one-dimensional maps. We also calculate the dynamical exponent z.
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There is nowadays a massive evidence of fractals and
scale invariant phenomena in nature. They appear in an
impressive variety of inanimate systems such as the geo-
logical (e.g., earthquakes) or climatic (e.g., atmospheric
turbulence) ones, as well as of biological or living systems
(e.g., biological evolution, cell growth, economic phenom-
ena, among others). In most of the naturally occurring
cases, no particular tuning is perceived. Per Bak and col-
laborators have advanced [1,2] the hypothesis that, for
many if not all the cases, this is so because the micro-
scopic dynamics of the system makes it to spontaneously
evolve towards a critical, scale-invariant, state. This is
largely known today as self-organized criticality (SOC).
Models have been formulated and experiments have been
performed which profusely exhibit this interesting type of
behaviour in sandpiles, ricepiles, earthquakes and others
(see for instance [3–5] and references therein). One such
model is that introduced in 1993 by Bak and Sneppen (BS)
[6] to paradigmatically describe biological species evolu-
tion. This is the model that we focus on here. The system
is self–critical in the sense that, after a transient, it attains
a stationary state in which there are avalanches of activ-
ity of all temporal sizes. Even more, both temporal and
spatial correlations functions decay as power laws with
non–trivial exponents.

In what concerns to evolutionary theory, this was the
first statistical model of biological evolution which dis-
played punctuated equilibrium. This concept, introduced
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in 1977 by Gould [7] refers to the fact that evolution seems
to take place not through gradual and continuous process,
but rather by means of burst of strong activity, separating
long periods of quasi stability of the species during which
almost nothing changes.

Although the BS model has been vastly studied dur-
ing the last years, there is one important point that has
never been addressed as much as we know. Moreover, it
has received little attention in the general context of SOC
systems. This is the sensitivity to the initial conditions,
which is known to be most relevant in nonlinear dynam-
ical systems (quantities intensively studied such as Lya-
punov exponents, spread of damage, are in fact nothing
but specific expressions of this concept). The study of this
important property is the basic aim of the present work.
It is worth to stress here that one should not confuse crit-
icality with chaos, as Bak and Sneppen properly pointed
out in their original paper [6]. There are examples of criti-
cal systems which are not chaotic [8] showing that the last
concept is not necessarily related to the former.

Before describing our particular approach of BS model,
let us introduce some preliminary notions by using, as a
simple illustration, the following one-dimensional logistic-
like map (see [9] and references therein)

xt+1 = 1 − a x2
t , (t = 0, 1, 2, . . . ). (1)

There is a critical value ac = 1.4011 . . . such that, for
a < ac, we observe a regular evolution (finite-cycle at-
tractors), whereas, for a > ac, chaos becomes possible.
Approaching ac from below we can see the celebrated
doubling-period road to chaos, with its successive bifur-
cations. If we consider, at t = 0, two values of x0 which
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slightly differ by ∆x(0) and follow their time evolution,
we typically observe the following exponential behaviour
for ∆x(t)

lim
∆x(0)→0

∆x(t)

∆x(0)
= exp[λt] (2)

where λ is known as the Lyapunov exponent. If λ < 0
(which is in fact the case for most values of a below ac)
we shall say that the system is strongly insensitive to the
initial conditions. If λ > 0 (which is in fact the case for
most values of a above ac) we shall say that the system
is strongly sensitive to the initial conditions. Finally, if λ
vanishes we shall speak of a marginal case. This is what
happens, in particular, at the onset of chaos. For this value
of a, the sensitivity is not characterized by an exponential-
law, but rather by a power-law [10,11]

lim
∆x(0)→0

∆x(t)

∆x(0)
∼ Ctδ (t� 1). (3)

The δ > 0 and the δ < 0 cases respectively correspond
to weakly sensitive and weakly insensitive to the initial
conditions [10].

Let us now return to the BS evolution model. The
model consists in a N -site ring (linear chain with peri-
odic boundary conditions); on each site (j = 1, 2, ..., N)
we locate a real variable Bj (0 ≤ Bj ≤ 1, ∀j) which cor-
responds to a “fitness barrier” separating two connected
(first-neighboring) “species of living organisms”. We start
by randomly and independently attributing the set of val-
ues {Bj}. At each successive elementary time step we iden-
tify the smallest Bj , and randomly change (“mutate”) it
as well as its two nearest neighbors. After some transient
(that depends on the size of the system), a peculiar self-
organized state emerges [6], rich in avalanches of all sizes
and other scale invariant properties which makes the sys-
tem to exhibit a variety of power laws.

In the present work we focused the sensitivity to the
initial conditions of the Bak and Sneppen model. We shall
exhibit that, at its self-organized critical state, weak sensi-
tivity to the initial conditions (i.e., a power-law of the type
indicated in Eq. (3)) occurs very similarly to the one just
described at the onset of chaos of the map (1). To do that
we apply the spreading of damage technique, which is es-
pecially useful for systems with a large number of degrees
of freedom like the present model. It basically consists in
studying the time evolution (under the same realization of
the noise) of the Hamming distance between two replicas
of the system with slightly different initial conditions. If
the Hamming distance or damage spreads, we say that the
system presents sensitivity to initial conditions. As in the
case of the logistic map (1), we can classify the sensitiv-
ity as weak or strong depending on whether the damage
spreads as a power or exponential law.

The procedure is the following: once SOC has been

achieved, we consider that system as replica 1 ({B(1)
j })

and create a replica 2 ({B(2)
j }) by randomly choosing one

of its N sites, and exchanging the value associated with
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Fig. 1. Time evolution of the damage associated with one
realization of a typical system with N = 1000.

this site and that with the smallest barrier; hence the ini-
tial damage is of order 1/N so, for N → ∞ we satisfy
the restriction that the initial perturbation be vanishingly
small (see Eq.(2)). We consider this moment as the col-
lective time step t = 1 (we define a collective time step as
N times the elementary time step, i.e., each site is going
to be updated only once in average during a unit collec-
tive time step). From now on, we apply, for both replicas,
the rules of identifying the smallest barrier and updating
that particular one and its two first-neighbors. We use the
same random numbers for both replicas (hence, three dif-
ferent and independent random numbers are involved in
the operation).

We define now the Hamming distance between the two
replicas as

D(t) ≡
1

N

N∑
j=1

∣∣∣B(1)
j (t) − B

(2)
j (t)

∣∣∣ . (4)

One such realization is shown in Figure 1 for N = 1000.
We then average Nr realizations (we have used typically
NrN = 105) and obtain 〈D〉(t), which is presented in
Figure 2 in a double logarithmic plot for different sizes.
It is then clear that a power law spread of the damage
emerges (and therefore λ = 0) indicating a weak sensitiv-
ity to initial conditions. The observed saturation of the
curves for very long times is a consequence of the finite
size of the systems. These results enable the determina-
tion of the slope δ = 0.32 . . . to be compared, for instance,
with the logistic map value 1.31 . . . [10].

For fixed N , we denote by τ the value of t at which
the increasing regime crosses over onto the saturation
regime (intersection, in Fig. 2, of two straight lines, namely
those defined by the linearly increasing branch of the curve
and the horizontal branch). The proportionality τ(N) ∝
Nz defines the dynamical exponent z ([12] and references
therein). We obtained (see Fig. 3) z = 1.6 ± 0.1, to be
compared, for instance, with 2.16 obtained [12] for the
square-lattice Ising ferromagnet.
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Fig. 2. Average of Nr realizations such as those of Figure 1
for three different sizes: N = 1000 (top), N = 500 (middle)
and N = 250 (bottom). The slope δ equals 0.32± 0.01.

Fig. 3. Log-log plot of τ versus N for the three curves of
Figure 2.

Finally, we see from the data collapse of Figure 4 that
the normalized Hamming distanceD(N, t)≡〈D(t)〉/〈D(1)〉
presents the following finite size scaling behavior:

D(N, t) ∼ Nβ F

(
t

Nγ

)
, (5)

with β = 0.54 and γ = 1.7, which agree, within the error
bars, with the previous scalings by setting β = γδ and
γ = z.

Note that, as proposed in [10,11], the concept of Lya-
punov exponent can be generalized by the following ex-
pression:

lim
∆x(0)→0

∆x(t)

∆x(0)
∼ [1 + (1− q)λqt]

1
1−q (q ∈ R) (6)

in such a way that for q = 1 we recover the usual defini-
tion and for q 6= 1 and t → ∞ we take into account the

Fig. 4. Data collapse of D(N, t)/Nβ versus Nγ for the three
curves of Figure 2.

marginal cases (λ1 = 0) described by the following power
law:

lim
∆x(0)→0

∆x(t)

∆x(0)
∼ [(1 − q)λq]

1
1−q t

1
1−q (t→∞). (7)

Therefore we can relate q to the δ exponent as

δ =
1

1− q
. (8)

In the present case this relation implies q = −2.1. The
coefficient λq is the generalized Lyapunov exponent, and
appears to satisfy [10,11] Kq = λq if λq ≥ 0 and Kq = 0 if
λq < 0 (generalization, for arbitrary q, of the well known
Pesin equality), where the generalized Kolmogorov-Sinai
entropy Kq is defined [10,11] analogously to the usual
Kolmogorov-Sinai entropy (K1 herein). More precisely, in
the same wayK1 essentially is the increase per unit time of
the Boltzmann-Gibbs-Shannon entropy S1≡−

∑
i pi ln pi,

Kq essentially is the increase per unit time of the gener-
alized, nonextensive, entropic form [13]

Sq ≡
1−

∑
i p
q
i

q − 1
(q ∈ R). (9)

This entropy (5) has led to a generalized thermostatis-
tics [13,14] (which recovers the usual, extensive, Boltz-
mann-Gibbs statistics as the q = 1 particular case), and
has received applications in a variety of situations such
as self-gravitating systems [15], two-dimensional-like tur-
bulence in pure-electron plasma [16,17], Lévy-like [18],
correlated-like [19] anomalous diffusions, among others
[20]. Recently it has been shown [11] that the index q
can be related to the fractal dimension of the attractor
at the onset of chaos in one dimensional maps. In par-
ticular, the Boltzmann Gibbs limit q = 1 corresponds
to the case when the attractor has an Euclidean (non-
fractal) dimension df , while q 6= 1 reveals the existence
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of a fractal attractor. In this sense, it would be interest-
ing to analyze in more detail the possible connections be-
tween sensibility to initial conditions in self critical sys-
tems and the fractal dimension of the SOC attractors.
Since (q−1) measures the degree of entropy nonextensivity
(Sq(A + B) = Sq(A) +Sq(B) + (1− q)Sq(A)Sq(B) for two
independent systems A and B), it is an important index
to be analyzed whenever discussing universality classes.
Consistently, the determination of q for other SOC models
would be very welcome. Indeed, it will provide an insight
on the fractal nature of the attractor towards which the
system is spontaneously driven.

Concluding, we have shown in this work that the SOC
state of the BS model displays, like the onset of chaos in
one dimensional maps, weak sensitivity to initial condi-
tions, a property which is believed to be crucial for the
evolutionary process [21].
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